Multi-view face and eye detection using discriminant features

نویسندگان

  • Peng Wang
  • Qiang Ji
چکیده

Multi-view face detection plays an important role in many applications. This paper presents a statistical learning method to extract features and construct classifiers for multi-view face detection. Specifically, a recursive nonparametric discriminant analysis (RNDA) method is presented. The RNDA relaxes Gaussian assumptions of Fisher discriminant analysis (FDA), and it can handle more general class distributions. RNDA also improves the traditional nonparametric discriminant analysis (NDA) by alleviating its computational complexity. The resulting RNDA features provide better accuracy than the commonly used Haar features in detecting objects of complex shapes. Histograms of extracted features are learned to represent class distributions and to construct probabilistic classifiers. RNDA features are subsequently learned and combined with AdaBoost to form a multi-view face detector. The method is applied to both multiview face and eye detection, and experimental results demonstrate improved performance over existing methods. 2006 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Au th or ' s pe rs on al co py Multi - view face and eye detection using discriminant features q

Multi-view face detection plays an important role in many applications. This paper presents a statistical learning method to extract features and construct classifiers for multi-view face detection. Specifically, a recursive nonparametric discriminant analysis (RNDA) method is presented. The RNDA relaxes Gaussian assumptions of Fisher discriminant analysis (FDA), and it can handle more general ...

متن کامل

Multi-View Face Detection in Open Environments using Gabor Features and Neural Networks

Multi-view face detection in open environments is a challenging task, due to the wide variations in illumination, face appearances and occlusion. In this paper, a robust method for multi-view face detection in open environments, using a combination of Gabor features and neural networks, is presented. Firstly, the effect of changing the Gabor filter parameters (orientation, frequency, standard d...

متن کامل

Robust Facial Features Localization on Rotation Arbitrary Multi-View face in Complex Background

Focused on facial features localization on multi-view face arbitrarily rotated in plane, a novel detection algorithm based improved SVM is proposed. First, the face is located by the rotation invariant multi-view (RIMV) face detector and its pose in plane is corrected by rotation. After the searching ranges of the facial features are determined, the crossing detection method which uses the brow...

متن کامل

Kernel Machine Based Learning for Multi-View Face Detection and Pose Estimation

Face images are subject to changes in view and illumination. Such changes cause data distribution to be highly nonlinear and complex in the image space. It is desirable to learn a nonlinear mapping from the image space to a low dimensional space such that the distribution becomes simpler, tighter and therefore more predictable for better modeling of faces. In this paper, we present a kernel mac...

متن کامل

The Mechanical Design of Drowsiness Detection Using Color Based Features

This paper demonstrates design and fabrication o f a mechatronic system for human drowsiness detection. This system can be used in multiple places. For example, in factories, it is used on some dangerous machinery and in cars in order t o prevent the operator o r driver from falling asleep. This system is composed of three parts: (1) mechanical, (2) electrical and (3) image processing system. A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer Vision and Image Understanding

دوره 105  شماره 

صفحات  -

تاریخ انتشار 2007